当前位置:首页 > 文章导读 > 自然科学版

基于深度学习的腹部多器官图像分割
谢飞1,2,权媚阳3,管子玉3,段群4
1.西北工业大学 计算机学院;2.西安电子科技大学 前沿交叉研究院,; 3.西北大学 信息科学与技术学院;4.咸阳师范学院 计算机学院
 全文: PDF  
摘要:

CT扫描是临床上腹部相关疾病诊断的常规检查方式,通过CT,医生能对腹部的器官结构和组织病变结构产生更加直观的观察,从而提高了疾病诊断的准确性,因此,精准地对CT图片进行图像分割有着非常重要的临床价值。传统的分割算法针对腹部形变较大、体积较小且组织边缘模糊的器官分割效果相对较差。为此,该文提出了基于改进nnUNet腹部多器官图像分割方法,在腹部CT图像上分割肝脏、胃、肠道和胰腺4个器官。该文利用自适应权重的损失函数对nnUNet网络进行改进,使得网络在分割过程中更加关注体积较小且样本数量相对较少的器官特征。实验表明,该文提出方法相对于现有传统的分割方法具有更高的准确性和敏感性。

关键词: 腹部多器官分割;nnUNet;自适应权重损失函数;语义分割
发表年限: 2021年
发表期号: 第1期